微信号:8149027
不接反杀,想去别人群里开挂,开不了不用加。
复制微信号
GRB根据其及时伽马射阶段的属性进行分类。GRB 211211a的及时发射(扩展数据图1)显示了三个不同的发作:弱的前体,明亮的多言式主爆发和高度可变的时间扩展发射。选择光谱和时间分析的时间间隔以分别表征它们。Swift和Fermi数据使用Heasoft v.6.30处理。从Fermi Gamma-ray爆发监视器数据中提取光谱,并在XSPEC42中拟合。时间特性是使用良好的技术从迅速的蝙蝠光曲线得出的43,44。
前体阶段的短持续时间为0.15 s,在〜75 keV处峰值峰值,最小可变性时间尺度为21±4 ms,并且在50-100 kev(30-100 kev(band 3-25)中,在68%的时间内引用了正面的滞后(68%Cl;不确定性)在68%Cl中引用)。在346 MPC时,测得的通量为8×10-7 ERG cm -2 s -1(10–1,000 keV),对应于〜1049 ERG S -1的光度。
静止1秒后,我们检测到主及时发射的开始,该发射由多个持续约10 s的重叠峰组成。时间平均的光谱峰在750±10 keV处,最小变异时间尺度为14±5 ms,并且时间滞后忽略不计。在此发作期间测得的总通量为〜3.7×10-4 ERG cm -2(10–1,000 keV),这是有史以来最高的GRB之一。然而,在346 MPC的情况下,典型的GRB范围内的ISO总同等于γ射线的能量Eγ将〜5×1051 ERG。
低级持久发射的短暂(3-s)时期先于持久尾巴的发作。扩展发射的时间平均光谱的软峰为52±2 keV,最小变异时间尺度为42±9 ms,滞后为正。总体通量为〜5×10-5 erg cm -2(10–1,000 keV),对应于Eγ,ISO≈7×1050 ERG。
我们使用四个分类器将主要及时排放的特性与GRB的群体进行比较:持续时间/硬度比例图46,滞后 - luminosity Relation43,可变性时间表44和AMATI相关性45(扩展数据2)。与GRB 0606143相似,GRB 211211a显示了两个主要GRB类之间中间的特征:基于持续时间和硬度比率的传统分类将此事件置于长GRB的类别中;但是,其其他特性符合短爆发等级。它的混合性质不允许我们仅根据其高能特性而明确将其链接到祖细胞系统。
GRB环境通常提供严格的祖细胞系统证据,尽管是间接的。在GRB 211211a的情况下,在HST的晚期成像中未检测到潜在的宿主星系(图1)。通过种植具有指数磁盘曲线和不同亮度的人工资源,我们得出了F814W的上限> 26.5 AB MAG和F160W> 27.6 AB MAG。由于没有发现一致的星系,因此我们分析了GRB字段以搜索其最可能的宿主。我们从GRB位置识别出七个星系(图1):r = 19.50±0.02 mag的G1,偏移为5.55英寸±0.03英寸,G2,r = 20.88±0.05 mag,在〜10英寸的偏移量为〜10英寸,五个微弱的对象(> 26 ab mag)offected(R> 26 ab mag)offected对象(> 26 ab mag)在2.5'之间。通过在R-Band47中使用Galaxy的数量计数,我们将G1的偶然比分PCC得出1.4%,G2> 10%,其他微弱的星系> 40%。因此,概率论点有利于GRB 211211a和G1之间的关联。我们注意到,将银河系与GRB关联的概率阈值通常> 1%,这意味着与先前对GRB Galaxies12,47的任何研究一样,PCC≈1.4%的G1将被视为最可能的宿主。此外,在我们的光谱观测中,我们没有发现在GRB位置的任何发射线的证据,低至> 2×10-17 ERG cm -2 s -1Å -1在4,800–6,100Å的范围内。使用[O] 3727和Hβ作为未遮挡星形形成的指标48,我们对恒星形成速率SFR置于上限< 1M yr−1 for z < 0.65. This corresponds to the median SFR of long GRB hosts 1. Astron. Astrophys. 623, A26 (2019)." href="https://www.nature.com/articles/s41586-022-05327-3#ref-CR49" id="ref-link-section-d31358853e1951">49 at z < 1, providing additional constraints on any possible underlying galaxy.
The spectrum of G1 shows several emission lines including Hα, [N ], and [S ] at a common redshift of z = 0.0762 ± 0.0003, consistent with a previous report9 based on data from the Nordic Optical Telescope (NOT). Assuming a ΛCDM cosmology50 with a Hubble constant of H0 = 69.8 km Mpc−1 s−1, we find a luminosity distance dL = 346 Mpc, and a distance modulus μ = −37.7 mag. Using the host galaxy photometry (Supplementary Table 1), we compute a rest-frame absolute B-band magnitude of MB ≈ −17.6 AB mag, corresponding to LB ≈ 0.1L⁎ (L⁎, characteristic luminosity of the Schechter function) when compared to the galaxy luminosity function51 at a similar redshift (0.05 < z < 0.2).
The brightness (LHα ≈ 1040 erg s−1) and relative ratio of these lines (log([N ]/Hα) ≈ −0.7) point to a star-forming galaxy with SFR ≈ 0.05M yr−1 and sub-solar metallicity 12 + log(O/H) ≈ 8.4. We also find evidence for weak [Mg λ5175Å] absorption at ~5,567 Å, indicative of an evolved stellar population, although this feature is affected by a nearby skyline.
We model the galaxy’s surface brightness using GALFIT52. A good description () of its morphology is obtained by including two Sersic profiles with index n = 1, one with half-light radius Re,1 ≈ 2.15 arcsec (F814W; ~3.1 kpc at z = 0.076) and one with Re,2 ≈ 0.5 arcsec (F814W; ~0.7 kpc at z = 0.076) to model the central bar. Similar results are obtained on the F160W image with Re,1 ≈ 2.34 arcsec and Re,2 ≈ 0.64 arcsec. The half-light radius r50 ≈ 1.1 arcsec obtained through Source Extractor is given by the weighted average of these two components.
The galaxy’s global properties were determined by modelling its SED (Supplementary Table 1) with Prospector53, adopting the same settings used for GRB host galaxies12,54. We derived a stellar mass of , a star-formation rate SFR = (0.06 ± 0.02)M yr−1, a low dust content , and a mass-weighted stellar age . When compared to the sample of long GRBs, the properties of the host of GRB 211211A are not unprecedented but extremely uncommon. The inferred SFR lies in the bottom 10% of the observed distribution, leading to an unusually low specific SFR, sSFR ≈ 0.06 Gyr−1. This value is below the main sequence of star-forming galaxies55, indicating that G1 may be migrating to a quiescent phase. This differs from the typical environment of long GRBs at both high and low redshifts: for comparison, nearby events such as GRB 060218 and GRB 100316D were associated with sSFR ≈ 4 Gyr−1 and sSFR ≈ 0.2 Gyr−1, respectively56,57. Dissimilarities with the class of short GRBs also exist: the stellar mass lies at the bottom 10% of both short GRB and supernova type-Ia host galaxies58,59, as for GRB 060614, which was hosted by a dwarf galaxy5.
The SED of the GRB counterpart at different times is shown in Fig. 2. These epochs were selected to maximize simultaneous multiwavelength coverage. When needed, the data were rescaled to a common epoch using the best-fit temporal model.
In the first epoch at T0 + 100 s, the X-ray emission is characterized by a flat spectral index βX = 0.00 ± 0.03. A spectral break is required above ~10 keV to account for the lower flux and soft spectral index, βBAT ≈ 2, measured in the hard X-ray band. In addition, the high X-ray-to-optical flux ratio, FX/FO ≈ 100, requires a turn-over to a steep spectrum between the X-ray and optical band. These properties are consistent with self-absorbed synchrotron radiation in the fast-cooling regime. The location of a self-absorption frequency, νa ≈ 10 eV, indicates a compact emitting region60 with radius R ≈ 1013(Γ/300)3/4 cm, where Γ is the outflow bulk Lorentz factor. This radius is typical of dissipation processes within the GRB outflow, indicating that at ~T0 + 100 s the prompt phase is still dominant at both X-ray and optical wavelengths.
In the second epoch at T0 + 1 h, the GRB counterpart displays blue colours with a spectral index βO = 0.23 ± 0.10 in the UV and optical bands. At X-ray energies the spectrum, extracted between 3 ks and 5 ks, has a slope of βX = 0.50 ± 0.05. This index points to synchrotron radiation in the slow cooling regime, in which the cooling frequency is νc > 10 keV and the synchrotron frequency is νm 1 eV. In this case, the X-ray spectral slope is related to the energy distribution of the emitting electrons, N(E) E−p with p = 2βX + 1 = 2.0 ± 0.1. This is a fundamental constraint to the long-term afterglow evolution. The steepest spectral slope explained by this model is p/2 ≈ 1.05, and only for energies above νc. Therefore, the UVOIR and X-ray non-thermal afterglows are bound to remain on the same spectral segment over the time span of our observations.
Starting from ~T0 + 5 h, a simple non-thermal spectrum can no longer reproduce the broadband emission. An UVOIR excess is detected at all epochs. It is characterized by a narrow spectral shape peaking in the u band, well described by a blackbody function with temperature T ≈ 16,000 K (rest frame) and a luminosity Lbol ≈ (3.5 ± 2.0) × 1042 erg s−1. We therefore fit each SED epoch with a blackbody (UVOIR) plus power-law (X-ray) model, and derive the total integrated blackbody luminosity, its temperature and radius as a function of time (Fig. 2 and Extended Data Table 1). The luminosity is better constrained in our second epoch at T0 + 10 h, Lbol = (1.90 ± 0.15) × 1042 erg s−1 and is seen to decrease in time following a power-law t−0.95, consistent with the evolution of AT2017gfo27.
We investigate the joint X-ray/UV/optical SED at 1 h to place a direct upper limit on the GRB distance scale. UVOT spectra were created with the tool uvot2pha using the same source and background regions selected for photometry. We adopt a power-law model and include the effects of absorption, dust reddening and intergalactic medium attenuation as implemented in the XSPEC models zphabs, zdust and zigm. The Galactic absorption was fixed to NH = 1.76 × 1020 cm−2 and the reddening at E(B − V) = 0.015 mag. All other parameters were left free to vary. We increase the redshift from 0 to 2.5 in steps of 0.1 and find the best-fit model by minimizing the Cash statistics, recording its value at each step. On the basis of the variations of the test statistics, we derive an upper limit of z < 2.3 (99.9% CL) from the UV/optical data, and z < 1.5 (99.9% CL) from the joint X-ray/UV/optical fit. By imposing the redshift of the putative host galaxy, z ≈ 0.0762, we find no evidence for any dust extinction or absorption at the GRB site with 3σ upper limits of E(B − V)z < 0.005 mag and NH,z < 9 × 1019 cm−2, respectively. This is consistent with the location of the GRB, well outside the galaxy’s light.
Swift observations show a rapidly fading X-ray afterglow followed by a shallower decline FX t−α with between 1 ks and 40 ks, and a final steep decay with α = 3 ± 0.5 after 40 ks. On the basis of this model, we infer an X-ray flux of ~4 × 10−12 erg cm−2 s−1 at 11 h. This corresponds to a luminosity LX ≈ 6 × 1043 erg s−1 at 346 Mpc, nearly two orders of magnitude below the typical X-ray luminosity of cosmological GRB afterglows at this epoch (see figure 7 of ref. 23). The low ratio between the observed X-ray flux and the emitted gamma-ray fluence, logfX,11hr/Fγ ≈ −7.9, is indicative of atypical properties for this explosion (compare with figure 17 of ref. 12).
Our SED analysis (Fig. 2) demonstrates that the X-ray counterpart is dominated by non-thermal emission consistent with synchrotron radiation. Although we interpret the early (<300 s) X-ray emission as the tail of the prompt phase, at later times (>1,000 s) the most common origin of non-thermal afterglow radiation is the interaction between the ambient medium and the GRB jet occurring at large distances (>1017厘米)来自中央来源。在这种外部震动模型61中,由于GRB流出的准确性,几何因素可以解释2或更快的通量衰减速率。光曲线陡峭的时间TJ,所谓的射流断裂,随喷射角度θc的增加而增加。在40 ks处的喷气间断裂将需要一个非常狭窄的射流,然后只能在轻度张力下与观测值时实现α=p≈2.1的衰减。我们通过对X射线进行建模和早期(〜t0+1 h)的紫外线数据测试了早期喷气间断的假设,该数据假设外部环境均匀,并且是射流的顶部帽子和高斯横向结构。尽管数据集受到限制,但它为模型提供了严格的限制:T0+1 h时的扁平紫外线SED(图2)要求同步加速器峰以接近光学范围,从而限制了同步体频率νm和峰值通量FPK的值;X射线光谱将冷却频率放在νC> 10 keV处,并提供了P≈2.0–2.1的测量,X射线光曲线限制了射流开口角θc和视角θv。我们用司令64和九个自由参数进行了贝叶斯参数估计:n,p,ek,iso,θc,θv,外部射流截断角θw,冲击微物理参数εe和εb和参与分数ξn。最佳拟合的卡方更减少;与ξn冷冻1的拟合发现相似但需要的非物理冲击参数εe≈εb≈1。参数估计报告了能量EK的射流,ISO≈(0.8-17)×1051 ERG,宽度θc≈1.9-5.7°,在θvous上查看,在θvous上,从quy 1.1 – 1.1 – 5.4°c上观看。外部密度为N≈0.016–12 cm -3。电击参数为P≈2.1–2.2,εe≈0.05–0.77,εb≈(0.1-6.0)×10-4,ξn≈(0.8-9.6)×10-2。在这种情况下,射流的光束校正的动能为(0.4-4.4)×1049 ERG。假设余辉和提示排放之间的角度校正相似,则 这种情况给非物理伽马射线效率ηγ=eγ,ISO/EK,ISO> 100%和90%的概率ηγ> 15%的情况提供了约65%的概率。结合较差的卡方1.8的较差,我们得出结论,外部冲击是同时再现GRB余辉的显着特征的外部震动,这是T0+1 h,X射线SpectrumβX≈0.50.5的平坦紫外/光谱,X射线频谱β≈0.5,以及X射线陡峭的衰减X-RAY的变化,在40 ks之后,又有40 ks的效果,以又有40 ks的效果,以下效果会在40 ks中脱颖而出。考虑逆康普顿冷却的影响时,可能会减轻这种张力。在汤普森分裂为主导的逆康普顿冷却65的极限中,我们估计所需的各向同性能量将增加约100倍,密度降低了约1,000倍。但是,喷气开口和观看角必须降低到0.5°才能重现最终的陡峭衰变。
如果不是由喷气式破裂引起的,则由于GRB流出的相对论性和扩展性质,亮度迅速下降就很难产生。由于曲率效应13,由于光子的不同到达时间,GRB实验室框架中亮度的任何快速降低都会在观察者框架中涂抹,从而产生α= 2+βx≈2.5的衰减。然而,这比喷气式飞机模型允许的斜坡更陡峭,并且可能比标准外部冲击更好的描述。如果将其解释为曲率效应,则在0.5 d处陡峭的陡峭将观察到的X射线发射与中央发动机的持久活性联系起来,例如“内部高原” Model66,67或GRB射流的角结构。如果结构化射流会在高纬度区域(射流“机翼”)中产生GRB及时发射,则该发射将相对于核心及时发射,并通过曲率效应延迟36。使用适当的喷射结构,这可以表现为X射线发射,并具有浅衰变,然后是陡峭的光曲线。在稀有介质中“裸”结构化的GRB爆炸的情况下,这种功能通常被更明亮的外部冲击发射所隐藏,可能会变得显而易见。后一种模型对GRB 211211A的X射线行为及其与银河系的物理偏移无需长达数小时的中央发动机活动,提供了一致的解释。
尽管余辉发射的物理起源不确定性,但观察到的X射线光谱得到了很好的测量,并且其外推到Uvoir频段明确地将其放在〜t0+5 h之后的紫外/光学检测下。通过减去外推非热成分来测量观察到的紫外线过量。此过程不需要对非热发射的物理解释,并且在Uvoir带中的非热贡献提供了上限。因此,对紫外线过量的识别并不取决于GRB 211211a非热发射的特定物理解释。
我们首先检查了迅速旋转的巨星(Collapsar)崩溃产生的最常见的长GRB案例。超新星爆炸波的出现会产生超过标准余辉25的发光蓝色发射,我们测试这是否与GRB 211211a中观察到的Uvoir过量过量一致。折叠由紧凑的恒星岩心引起,产生能量和长寿的IC超新星或高诺沃。但是,如果折叠发动机不会产生相当大的56NI(例如,来自后备折叠板),则爆炸波会产生短暂的超新星光曲线,该曲线在前10 d中消失了。为了测试该模型,我们进行了一系列的高氮爆炸,改变了祖先星的质量((2.5-40)m)和密度谱((2.5-40)m)和密度(在核心和包膜的密度中变化)以及爆炸能量以及爆炸能量(球形1051-1052 ERG)。尽管我们可以重现辐射仪的演变(扩展数据表1),但最佳拟合模型中的早期发射过于能量(在UV和Extreme UV中)。随着喷射的冷却,发射峰值在后期的红外峰值,但是亮度是几个数量级,太暗了,无法解释观测值。为了说明光学和红外发射,快速扩展的超新星的光球必须揭示该磁盘中的折叠式积聚磁盘和风弹出磁盘必须具有与中子星磁盘68,69相似的特性,以产生类似KilOnova的瞬态。但是,即使在这种情况下,折叠术的大质量储层也会为长期延迟的晚期短暂转移提供动力,与观测值不一致。
为了使Collapsar模型起作用,我们还必须解释GRB与宿主星系的偏移。在主要恒星的超新星爆炸期间,二进制的O/B恒星可能是未结合的,将高达200 km S -1的“踢”授予O/B Companion70。这种适当的运动可能会使同伴O恒星远远超出其恒星形成区域(5 Myr中约1 kpc),但是这种踢不足以解释这种爆发的巨大偏移。总而言之,GRB 211211a的巨大恒星祖细胞自然会说明其长时间的持续时间,但需要多种异常情况(低56NI的产量爆炸,低质量的中子磁盘流出和极端的踢速度)来解释整个观测值。
观察到的过量发射可以通过紧凑的二进制合并来更好地拟合,该合并是两个中子星或中子恒星和恒星质量黑洞组成的。图3显示了与观测值一致的模型预测范围:仅一小部分光曲线(在“轴上”角箱中的900个中的4个;θv≈0-16°)与观测约束相匹配。近红外亮度通过质量md≈(0.01–0.03)m的动力喷射很好地描述,低于GRB 0606147,8推断的值。明亮的紫外线/光学对应物表明Kilonova弹出器具有巨大的(> 0.01m)风。然而,Kilonova Models28的Los Alamos国家实验室(LANL)网格的时间依赖性光谱产生的光曲线太暗了,无法与观察到的UV/光学发光性匹配,或者需要太大的喷射质量(〜0.1m)。具有较大弹出质量的模型(MW≈0.1m)可以更好地适应早期数据,但在以后的时间预测了通量;相比之下,仅在〜11 h之后,具有较低弹出质量的模型(MW≈0.01m)才能对数据集进行良好的描述。所有一致的模型均采用环形形态,用于高公路射出和低宽敞弹出和高膨胀速度大众vw≈0.3c的极性流出。
Kilonova弹出机制的许多改变很可能有助于解释早期的过量排放。例如,我们尚未进行详细的研究,该研究改变了改变不透明度和放射性加热的组成。放射性能量沉积71的不确定性以及磁盘 - 风弹性的特性允许广泛的行为,我们在这里的研究只会触及所有可能性的表面。然而,以最简单的形式,一种放射性动力的基洛诺瓦捕获了观察到的紫外线瞬态的后期演变,但在再现早期观察到的明亮光学发射时遇到了困难(t0+0.2 d)。
减轻对喷射质量需求的另一种方法是,基洛诺瓦是由额外的能源供电或受喷射 - ejecta Intercontions的影响的33。为了研究发动机驱动的模型,我们使用了与以前的研究相同的方法31。对于中央电源(无论是在中央黑洞上的磁力或后备)积聚的,能量必须从中心运输以影响光曲线。在这些型号31中,中央功率源直到合并〜0.01m后约5 d才会改变发射。但是,如果射流能够撤离紧凑型残留物上方的区域,则可以减少此延迟。我们通过一系列球形对称模型模仿了这种疏散,将总风质量降低到约10-7m。尽管信号峰较早,但解释我们的观察结果仍然为时已晚,并且所得的频谱太高(在极端紫外线中达到峰值;扩展数据;图6)。湍流运动可能会通过更快地将能量推向外层,从而有助于加速紫外线峰。
尽管我们警告说,Kilonova模型受到大型系统不确定性的影响,但我们发现合并后几个小时或几天,大多数发动机驱动的Kilonova型号31,72,73峰值,而Jet-ejecta Interventions仍然是合理的解决方案,以增强早期发射。
总而言之,我们发现紧凑的二进制合并自然可以说明GRB 211211a的大多数特征,从其Kilonova发作到其环境和高能特性。该模型的主要挑战仍然是迅速伽马射线排放的延长持续时间,需要高达〜100 s的主动中心发动机。
本文来自作者[yjmlxc]投稿,不代表颐居号立场,如若转载,请注明出处:https://yjmlxc.cn/jyan/202506-3803.html
评论列表(3条)
我是颐居号的签约作者“yjmlxc”
本文概览: GRB根据其及时伽马射阶段的属性进行分类。GRB 211211a的及时发射(扩展数据图1)显示了三个不同的发作:弱的前体,明亮的多言式主爆发和高度可变的时间扩展发射。选择光...
文章不错《附近的长伽马射线从紧凑的物体合并中爆发》内容很有帮助