微信号:8149027
不接反杀,想去别人群里开挂,开不了不用加。
复制微信号
在这项研究中使用的A. thaliana植物(COL-0生态型)在22°C和70%的湿度下漫长的一天(16 h光,深色深色)条件下生长。在相同条件下没有葡萄糖的发芽培养基上生长幼苗。
使用CRISPR -CAS9 Technique 42生成H2B.8的突变等位基因。使用Chopchop(v.3)43设计了四个单个指南RNA(SGRNA;补充表6),并使用Golden Gate System42克隆。使用花卉浸入野生型(WT)Col-0 A. Thaliana44,将构建体转化为Tumefaciens菌株GV3101。通过Sanger测序筛选转化子。选定的线被带到下一代,以产生没有CAS9的纯合突变体。H2B.8-1线是通过ECONI的DCAP进行基因分型的,而H2B.8-2线是通过PCR基因分型的(补充表6)。
对于H2B.8记者构建体(PH2B.8 :: H2B.8 – EGFP和PH2B.8 :: H2B.8 – MYC),将H2B.8上游约2 kb的H2B.8克隆为启动子,H2B.8 GDNA序列被放大(补充表6)。使用多站点网关技术(Thermo Fisher Scientific),分别将PCR产物连接到P4P1R和PDONR207。将序列组装到p2rp3中的羧基末端EGFP或3×myc标签的表达矢量PK7M34GW。异位H2B.8表达载体(p35s :: H2B.8 – EGFP)以相同的方式生成,但使用35S启动子。
天然和异位H2B.8ΔIDR表达构建体(PH2B.8 ::H2B.8ΔIDR– YFP和p35s ::H2B.8ΔIDR– YFP)由重叠PCR产生,以删除IDR序列,而exectic H2B.2(p35 gdp)(p35 gdp)(补充表6)。使用融合内克隆系统(Takara Bio)将产物连接到含有35S启动子和C端EGFP/YFP的PCAMBIA1300载体主链。
PH2B.8 :: H2B.8-N-N234K – MYC结构是通过重叠的PCR(补充表6)生成的,并与PDONR207相关,然后使用PK7M34GW表达量的pdonr207和H2B.8启动子和C-C-末端3×MYC TAG进行了连接,使用了PK7M34GW表达量,使用了多层式技术(Thermo Fishericic)(Thermo Fishericic)。
对于p35S :: H2B.8-SCRAMBLEDIDR – EGFP,p35s :: H2B.8-EWSR1-IDR-IDR – EGFP和p35S :: H2B.8-TAF15--TAF15-IDR – EGFP构建体,scrambledidr,scrambledidr(随机摆脱氨基酸序列(随机摆脱氨基酸序列)deviqdisanppvlenepvtpseptvqedtrecietpeetpeetpiSvpeGeatPetKdnsdfsssqtrtvdlkevpsvpppppregtppptpvvvvvvvvvvvvvvvvvdve);ewsr1-idr31(astdyStysqaaaqqqqgyaqptqGyaqTqyaqttqyaqqyagqqsygqudgptdvsytvsytqaqtatygqtatygqtatygqtatygqtayatsygqppptpytpatpytppqqayttppq pvq pvqpvqgyggaygaygaygaygaygaygaygaygaygaygaygaygaygayGNKPTETSQPQSSTGGYNQPSLGYGQSNYSYPQVPGSYPMQPVTAPPSYPPTSYSSTQPTSYDQSSYSQQNTYGQPSSYGQQSSYGQQSSYGQQPPTSYPPQTGSYSQAPSQYSQQSSSYGQQSSFRQDHPSSMGVYGQ),和TAF15-IDR31(sdsgsgsgqsggeqssystygnpgsqgygqsygqsygqsygqttdssygqnysgqsygqsqsgsgsgysqsyggyenqkqsssysqqpynnnqgqqqqqqnmessgsqggrapsydqpdygqqqdsydqqsgydqhqgsydeqsnydqsnydqqhdsysqnqssyhsq)序列分别通过拟南芥密码子使用优化并合成。然后通过重叠的PCR将合成的片段与H2B.8融合(补充表6)。将插入物克隆到包含35S启动子和C端EGFP的PCAMBIA1300载体。
上述载体转化为T3代或WT植物的H2B.8-1突变植物。在本研究中使用了T3或T4代的单个插入转基因线,每个测定中至少包括两个独立的转基因线。
如前所述45(补充图2A),使用BD FACSMELODY细胞分散者(BD Biosciences)(补充图2A),通过FACS(每种细胞类型)分离精子和营养核。每次重复的总共合并了200万个排序的核(从大约40 ml开的花朵中分离),并添加了0.45体积的3.2×裂解缓冲液(10%SDS,100 mM TEAB,pH 7.55)。将核在95°C裂解5分钟,然后在室温下以13,000克离心8分钟。将裂解物放入新的管子中。加入了十分之一的12%磷酸并通过移液混合。然后,加入S-trap缓冲液的体积(90%水溶液,100 mM TEAB,pH 7.1)的六倍,并通过移液器混合。通过在4,000g下离心30 s,将蛋白质加载到S型微柱(protifi)上。用150 µL S-STRAP缓冲液洗涤色谱柱三次。将蛋白质用4 µg胰蛋白酶在47°C的50 mM TEAB中用4 µg胰蛋白酶消化1小时。通过离心(30 s的4,000克)用40 µL 50 mM茶具,40 µL 0.2%甲酸和35 µL 50%乙腈和0.2%甲酸洗脱肽。
将洗脱的肽溶液干燥,并将肽溶于0.1%三氟乙酸和3%乙腈,用于液相色谱法(LC -MS/MS)。通过Nanolc -MS/MS分析精子和营养核样品,在Orbitrap Tribrid质谱仪上与最终3000 RSLCNANO LC系统(Thermo Fisher Scientific)耦合。将样品加载并使用0.1%三氟乙酸在20 µl min – 1的前列捕获并捕获3分钟。然后将陷阱柱与分析柱(纳米酶m/z色谱柱,HSS C18 T3,100Å,1.8 µm,水域)在线切换,使用以下较长的溶剂A(水,0.05%甲酸,0.05%的甲酸)和溶剂B(80%乙腈,0.05%的0.05%元素)在0.3%的流量上,以0.3%的速率为0.3%comcientim a(0.05%)comcipic a(0.05%)。(仅陷阱);3-14最小的B线性增加到B至13%;B 14-113分钟增加B至39%;113–123分钟将B增加到55%;其次是坡道至99%B,并重新平衡为3%B。
在正离子模式下以以下质谱仪设置获取数据。MS1/OT:120 K的分辨率,轮廓模式,质量范围M/z的300–1,800,4E5的自动晶粒控制和填充时间为50 ms。MS2/IT,使用高能量碰撞解离碎片进行以下参数进行以下参数:top30在其快速,质心模式下,隔离窗口,1.6 DA的隔离窗口,电荷状态为2-5,阈值1.9e4,碰撞为1.9e4,30次碰撞能量,30个碰撞能量,自动增益控制目标,最大的1.9e4,Dynampulusion usepulusion usevulusion useviusion 1.9e4,Dynampuliusive of Dynebusive of Dynebsive of 35毫秒15 sebleb of 35 ms的排除1 15±5 ppm。
For sperm and vegetative nuclear proteomes, recalibrated peak lists were generated with MaxQuant (v.1.6.1.0)46 in label-free quantitation mode using the TAIR10_pep_20101214 Arabidopsis protein sequence database (TAIR, 35386 entries) plus the MaxQuant contaminants database (245 entries).使用默认参数的最大标签定量结果与同一数据库上的内部吉祥物服务器2.4.1(矩阵科学)的搜索结果一起使用。对于所有搜索,使用了6 ppm的前体耐受性和0.6 DA的片段耐受性。将酶设置为胰蛋白酶/P,最大允许的裂解,氧化(M)和乙酰化(蛋白质N-术语)设置为可变修饰,并将甲型甲基化(C)设置为固定修饰。使用蛋白质的识别概率为99%,肽的识别概率为99%,将搜索结果进口到支架4(蛋白质组软件)中。
使用CLC主工作台软件(V.8.1; Qiagen)进行组蛋白DNA和蛋白质序列的比对。使用PONDR47和VL-XT算法进行了内在障碍的预测。使用R(v.3.6.0)48,49中的GGPLOT2绘制原始数据。
植物H2B蛋白序列是从Phytozome50,Angenie51,Waterlily Pond2,Magnoliid Genomes53,54和Uniprot55下载的。人类和酵母H2B序列是从Uniprot获得的,并用作系统发育学的外部。
序列被导入Mega-X56,并使用默认参数对齐。使用邻居加入测试生成系统发育,应用泊松模型并允许均匀的替代速率。由于形成不同的分支,与规范的H2B变体分开鉴定了H2B.8同源物。使用BLAST57搜索了几种代表性的H2B.8同源物,以查询此类同源物是否针对开花植物。H2B.8同源物在补充表1中列出。
如前所述,分离出微孢子和花粉,用Hoechst 33342染色,并使用Leica SP8X共聚焦显微镜检查。剖析年轻胚胎58,并用碘化丙啶染色进行成像。使用立体显微镜从干种子中分离成熟的胚胎。在显微镜检查之前,成熟的胚胎和幼苗(包括根)在具有0.1%Triton X-100和0.5 µg ML – 1 DAPI的PBS中染色5-10分钟(Zeiss 880,Airyscan Mode)。如前所述,用2周大的幼苗进行免疫荧光。
使用Ref改编的ImageJ中的半自动化管道从DAPI染色的整个花粉共聚焦图像中量化了精子核大小。59。简而言之,使用Autotheshold来获得核,然后使用高斯模糊处理以平滑边缘。重复自动座,然后使用魔杖工具选择核。然后获得用于核区域的测量(μm2)。选择进行分析的体细胞核是根尖伸长区域的血管缸细胞。由于能够准确识别组织中细胞类型的能力,因此选择了这种核。使用ImageJ,将Z堆栈分为根尖内不同单元层的替代。然后获得最大强度投影,以说明核深度的微小差异。图像以与精子核相同的半自动化方式分析。在R中进行了统计分析;我们使用方差分析,然后进行Tukey的事后测试进行成对比较。
使用ImageJ插件焦点3D60在WT和H2B.8精子中鉴定了焦点。
对于DAPI和H2B.8共定位(PH2B.8 :: H2B.8 – EGFP和P35S :: H2B.8 – EGFP),使用3D ImageJ Suite suite工具进行了OTSU阈值,对核进行了细分。提取每个分段核内DAPI和GFP通道的荧光强度测量。计算20×20体素区域的平均值。通过与整个相应核的DAPI或GFP强度的总和分开,将每个体积值归一化。通过GFP值将区域分为八个分位数,并针对DAPI强度绘制。
如前所述进行了H3K9me2灶的分类。H2B.8介导的染色质聚集体以相同的方式分类。
为了量化H2B.8聚合物和H3K9ME2域的大小和数量,我们使用了3D ImageJ Suite suite Tools61。在每个荧光通道中,我们使用OTSU阈值61进行了3D核分割。使用ggplot2将段的数量和体积绘制在R中。
如前所述45,从花粉中分离出精子和营养核,并重悬于200μl的Galbraith Buffer(45 mM MGCL2,30 mm柠檬酸钠,20 mM MOPS和0.1%Triton X-100,pH 7.0,pH 7.0)中。对于生成核,从花芽中手动解剖双细胞花粉,并通过DAPI染色和荧光显微镜单独上演。通过在裂解缓冲液中用剃刀刀片切碎(15 mM Tris-HCl pH 7.5,2 mm EDTA,0.5 mm的精子,80 mM KCl,20 mm NaCl和0.1%Triton X-100),从幼苗中提取核。将悬浮液通过35μm的滤波器(Corning)过滤成1.7 mL管。将细胞核在500克固定3分钟,并重悬于200μl裂解缓冲液中。
将核与4%无MEOH甲醛(Thermo Scientific)固定在溶液中5分钟。将HIQA编号1.5h盖玻片(蜂窝路)用10%HCl洗涤30分钟,然后在H2O中洗涤3次,持续5分钟以去除杂质。使用shandon Cytospin 2将固定的核以500g的覆盖片旋转3分钟。通过用4%无MEOH甲醛将核核重复固定5分钟。除去固定剂,并在PBS中洗涤3次,每次洗涤5分钟。在加湿的室内,在PBS中用3%BSA(PBST)在PBS中用3%BSA封闭细胞核。如果进行免疫染色,将抗体在PBST中的3%BSA中稀释200倍,然后在盖玻片上印迹至核。抗体孵育在4°C下过夜。通过用PBST洗涤3次去除初级抗体5分钟。将二抗与原代抗体相似,然后添加到核中。在室温下,在一个加湿的腔室中孵育1小时。如果不执行免疫染色,则该协议在这一点上恢复。像以前一样重复PBST洗涤。用DAPI或SYBR绿色(Invitrogen)在2mgμl -1或100倍稀释的情况下将细胞核在黑暗中染色5分钟。通过在H2O中洗涤5分钟来除去DNA染色。将盖玻片粘附在13μLVectashieldH-1000安装介质中。在Zeiss Elyra ps.1超分辨率显微镜上使用×63的油式透镜对核进行成像。
使用Zeiss Zen Black软件进行了SIM的3D重建。使用ImageJ62,63的交互式3D表面图插件获取了与图像相关的强度轮廓。
为了从WT和H2B.8获得体素强度,使用OTSU阈值分割了核并提取单个体素。通过除以总核强度来将荧光强度标准化。在R中用GGPLOT2绘制了BINNED VOXEL强度的密度。
A. thaliana组蛋白H2B.8,H2B.8ΔIDR,H2B.8-SCRAMBLEDIDR,H2B.2,H2B.2,H2A,H3,H3,H3突变体K9CC110A和H4的序列是在大肠杆菌中的蛋白质表达中优化的,并与pet30a+-conthig(Genewiz)中的蛋白质表达(Genewiz)进行了优化。大肠杆菌菌株BL21并如前所述纯化64。简而言之,在37°C的LB培养基中,细胞在30μgml– 1 kanamycin的LB培养基中生长至0.5-0.6。通过添加0.5 mM异丙基-β-D-硫代乙型甲酰胺糖苷诱导组蛋白表达,并在37°C下孵育4小时。通过在4,000 r.p.m的离心收集细胞。持续30分钟,并重悬于1×PBS中。重复离心,并将细胞重悬于WASH缓冲液中(50 mM Tris-HCl pH 7.5,100 mM NaCl,1 mM EDTA和5 mM 2-MERCATTO乙醇)。通过超声化裂解细胞,并在18,000 R.P.M.持续20分钟。将上清液丢弃,并用洗涤缓冲液和1%Triton X-100重悬于颗粒。对样品进行超声处理,然后用洗涤缓冲液再洗涤两次。然后将沉淀重悬于展开的缓冲液(20 mm Tris-HCl pH 7.5、7 m鸟肾hCl和5 mm 2-甲醇)中,并在室温下混合1.5 h,以完全溶解颗粒。该样品以18,000 R.P.M.30分钟。上清液在液氮中闪烁,然后存储在-80°C下。
如先前所述65,将12×177 bp的DNA模板克隆并纯化。177 BP DNA序列的序列列出如下:
5'-gagcatccggatcccccctggaatcccgcgcgcgcgcgcgccgccgctcaattggtcgtcgtcgtagacctctagcccagccgcttaaacgcacgcacgtacgcgCTGTCCCCCGCGTTTAACCGCCAGGGGGGGGGGGGGGGCCTCCTCCTCCCAGGCACGCACGTGTCACATATATATATATATATATATACATCCTGTCCCAGTGCCGCGCCC-3’
如先前所述64,对各自的组蛋白八聚体进行了重构。In brief, equimolar amounts of four individual histones were added into unfolding buffer (20 mM Tris-HCl pH 7.5, 7 M guanidinium HCl and 5 mM B-ME) and were then dialysed into refolding buffer (2 M NaCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA and 5 mM 2-mercaptoethanol) before purification using Superdex 200 columns (Cytiva).
如前所述,使用盐透析法组装核小体64。Histone octamers and DNA templates were mixed in TEN buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA and 2 M NaCl) and dialysed for 16–18 h at 4 °C in TEN buffer, which was continuously diluted by slowly pumping in TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA) to lower the concentration of NaCl from 2 to 0.6 M. Samples were collected afterHE缓冲液中的最终透析(10 mM HEPES pH 7.5,0.1 mm EDTA)持续4 h。通过在低浓度下(2.5μgDNA和50μl重构系统中的相应八聚体组装)评估核小体阵列组件的质量,并使用FEI TECNAI G2 Spirt 120 KV传输电子显微镜检查组蛋白八聚体对DNA模板的化学计量。
通过添加1.5 m多余的Alexa Fluor 594(AF594)-C5-甲酰亚胺(Invitrogen),在展开缓冲液中添加1.5 m多余的Alexa Fluor 594(AF594)-C5-Maleimide(Invitrogen),进行了组蛋白H3 K9CC110A的荧光团标记。通过添加10 mM DTT淬灭结合反应,并通过在展开缓冲液中通过SuperDex 200增加10/300柱(Cytiva)来消除自由荧光团。如上所述,将荧光标记的H3与相应的组蛋白与相应的组蛋白结合在一起。组蛋白H3突变体C110A不影响核小体的结构或定位66,H3突变体K9CC110A通常用于在半胱氨酸上安装甲基赖氨酸的类似物,其功能与其自然对应物67,68相似。在重建之前,将荧光标记和未标记的组蛋白八聚体以1:100的比率合并,以减少荧光标签期间对样品的潜在影响27。
如前所述27进行体外相分离实验。简而言之,将实验记录在384孔玻璃底板(Cellvis)上,并用光学清晰的粘合剂密封。使用前,将384孔板用5K MPEG-Silane卵粘,并用BSA钝化。首先将核小体阵列样品在染色质稀释缓冲液(25 mM TrisoAc,pH 7.5,5 mM DTT,0.1 mM EDTA和0.1 mg ML – 1 BSA,5%(W/V)甘油)中平衡,并在房间温度下孵育5分钟。然后在存在盐(KOAC和/或MG(OAC)2)的情况下将核小体阵列样品添加到1卷染色质稀释缓冲液中,并在室温下在室温下转移至Pegypated和BSA养育的384孔板中以在30分钟内孵育30分钟。添加染色质稀释缓冲液后,用Yoyo-1碘化物(491/509)(491/509)(491/509)(491/509)(491/509)(491/509)(Invitrogen)对双链DNA进行染色。
使用上面详细介绍的条件,使用配备有×100油浸泡物镜的Nikon A1共聚焦显微镜形成染色质冷凝物后,进行了体外FRAP和液滴融合实验。用561 nm的激光脉冲将液滴漂白(2重复,20%强度,停留时间1 s)。将降落后的强度标准化为降裂水平,以获得恢复的量度。NIS元素AR分析软件用于图像分析。
Vectors (p35S::H2B.8–eGFP, p35S::H2B.8-scrambledIDR–eGFP, p35S::H2B.8-EWSR1-IDR–eGFP and p35S::H2B.8-TAF15-IDR–eGFP) were transformed into Nicotiana benthamiana by Agrobacterium infection for transient expression.注射两天后,将叶片表皮分离并用含有0.2%(v/v)Triton X-100的DAPI溶液染色。使用Leica SP8X共聚焦显微镜获得图像。
为期10天大的WT和P35S :: H2B.8 – EGFP幼苗(每种处理的两种重复),并在50%(w/v)PEG6000 1×PBS中孵育3小时,以进行干旱处理或1×PBS的对照组。
叶组织(0.5 g)在液氮中接地,并悬浮在4 mL组蛋白提取缓冲液中(10 mM Tris-HCl pH 7.5,2 mM EDTA,0.25 M HCl,5 mM DTT和1×蛋白酶抑制剂鸡尾酒(Roche))。将悬架通过一层Miracloth(Merck Millipore)过滤,并以4,000 R.P.M离心。在4°C下持续10分钟。将上清液转移到新的管中,并与1.75 ml三氯乙酸溶液(T0699,Sigma)混合。通过在4,000 r.p.m的离心收集沉淀物。在4°C下持续20分钟,然后用1毫升丙酮洗涤两次。在与1×LDS样品缓冲液(NP0007,Invitrogen)中孵育过夜之前,将沉淀物进行干燥。将样品在95°C变性10分钟。对于精子,通过FACS对500万个精子核进行了分选(补充图2A)。将精子核在4°C下以1,200g离心5分钟。将细胞核用1 mL组蛋白提取缓冲液重悬于,然后加入0.25 mL三氯乙酸溶液并混合。组蛋白以与叶子相同的方式沉淀和洗脱。将抗H3K9ME2抗体(ABCAM,AB1220)稀释1:5,000,用于蛋白质印迹。
About 0.5 g of 10-day-old seedlings (two replicates for each genotype) were ground with a pestle and mortar in liquid nitrogen and homogenized in nuclei isolation buffer (0.25 M sucrose, 15 mM PIPES pH 6.8, 5 mM MgCl2, 60 mM KCl, 15 mM NaCl, 1 mM CaCl2, 0.9% Triton X-100, 1 mM PMSF and 1×蛋白酶抑制剂鸡尾酒(Roche)15分钟。通过通过两层奇迹(Merck Millipore)过滤将核与碎屑分离。对于花粉核,我们在Galbraith Buffer中收集了约20 ml的开花花和分离的花粉(每个基因型分离了两种重复)。通过在2,000 r.p.m的200 µL核分离缓冲液中用玻璃珠的玻璃珠通过玻璃珠释放了核。3分钟。连续地通过40 µM和10 µM细胞滤网过滤匀浆以获得核。为了最大化核的恢复,将保留在过滤器上的不间断花粉颗粒被回收到玻璃珠,并用核分离缓冲液进行涡旋,然后再进行一次过滤步骤。
将幼苗或花粉的核悬浮液以4,000克离心10分钟,并将沉淀重悬于TM2(50 mM Tris-HCl,2 mM MGCL2、0.25 m蔗糖,1 mM PMSF和1×蛋白酶抑制剂鸡尾酒)中。在4,000克冷离心5分钟后,将核重悬于MNase消化缓冲液中(50 mm Tris-HCl pH 7.5,5 mm CaCl2,0.25 m socrose,1 mm PMSF和1×蛋白酶抑制剂鸡肉鸡肉蛋白酶蛋白酶蛋白酶抑制作用鸡肉均适当的MNase(New Endland biolebabs at at at at at at at at at at at at at at at at at at at at at at at at)和浓度为10分钟。通过将EDTA添加到最终浓度25毫米来停止消化。加入1%Triton X-100和1%脱氧胆酸钠的十分之一体积,将样品放在冰上15分钟。然后,通过添加低盐缓冲液(50 mm Tris-HCl pH 7.5、10 mM EDTA,150 mm NaCl,0.1%Triton X-100、1 mM PMSF和1×蛋白酶抑制剂鸡尾酒),并在4°C下旋转1 h。离心后,将上清液用于免疫沉淀,并在4°C下过夜,并用预洗的GFP陷阱珠(Chromotek)过夜。将珠洗涤两次,每个珠子用低盐缓冲液和高盐缓冲液(50 mm Tris-HCl pH 7.5,10 mm EDTA,300毫米NACL,0.1%Triton X-100和1 mm PMSF),并在洗脱缓冲液(0.1 m Nahco3和1%SDS)中洗脱,以65分钟的摇动(0.1 m Nahco3和1%SDS)。在苯酚 - 氯仿DNA提取之前,用蛋白酶K和RNase A消化洗脱酸盐。使用Ovation Ultralow System V2制备库,并在NextSeq 500(Illumina)上进行测序,并具有2×38 bp配对的读数。
测序读数用Bowtie 2(v.2.3.4.1)69映射到Tair10,保留单核小体片段。使用Samtools-1.7 rmdup删除重复的读取。通过将IP BAM文件标准化到使用DeepTools(v.3.1.1)70的相应输入来生成Bigwig文件。确认每个实验的两次重复是高度相关的。单个重复用于下游分析。使用IGV(v.2.6.2)71可视化轮廓。
使用DeepTools生成了基础元图和热图的数据,并在R中使用自定义脚本绘制。
TE类是通过幼苗H3K9ME2富集(log2(免疫沉淀/输入))定义的。考虑到在TES处H3K9me2富集的双峰分布,选择0.7作为异晶(> 0.7)和格子的截止<0.7) classes.
To generate peaks, H2B.8 or H2B.8ΔIDR enrichment was calculated over 50-bp windows and those with >保留1.2 log2(IP/输入)。使用BedTools(v.2.28.0)72合并了150 bp之内的窗户。用大小过滤区域, <200 bp removed from analysis. H2B.8 enrichment was then calculated over the new regions, and those with <1.2 log2(IP/input) were discarded. The remaining regions were defined as H2B.8 peaks.
For genome coverage, peaks were divided into 50-bp windows and partitioned into gene, TE or intergenic groups depending on overlaps. Overlaps with genes and TEs for volcano plots were determined using BEDtools; 25% of the feature was required to be covered by a peak to be defined as an overlap.
Downloaded data73,74,75,76,77,78,79,80 were mapped and processed in the same way. PCA, and Spearman and Pearson correlations were calculated with deepTools using categorial genomic regions and plotted in R with ggplot2.
Downloaded sequencing reads81 were processed using TrimGalore (v.0.4.1) (https://github.com/FelixKrueger/TrimGalore) with default parameters. Reads were mapped to TAIR10 using Bismark (v.0.22.2)82, and methylation was called using MethylDackel (v.0.5.2) (https://github.com/dpryan79/MethylDackel), selecting --CHG and --CHH options. CG methylation data were used in PCA.
Sperm cells were isolated by FACS as previously described83, with two replicates isolated for each genotype (Supplementary Fig. 2b). RNA was extracted from 1 million sperm cells (isolated from approximately 100 ml of open flowers) per replicate using a Direct-zol RNA Microprep kit. A Plant RNeasy Mini kit was used to extract RNA from 10-day-old seedlings (three or two replicates of seedlings were used for each genotype in normal or drought/mock treatment conditions, respectively). Libraries were prepared using a Universal RNA-Seq library preparation kit and sequenced on NextSeq 500 (Illumina) with single end (76 bp) or paired end (2× 38 bp) reads.
Sequencing reads were mapped to TAIR10 with TopHat (v.2.0.10)84. Kallisto (v.0.43.0)85 and Sleuth-(v.0.30.0)86 were used to obtain transcript per million (TPM) values and q values, respectively. Differentially expressed genes and TEs were identified by | log2(TPM fold-change) | ≥ 2 (≥1 was used for calling drought-responsive genes) and q < 0.05. Volcano plots were generated with a custom ggplot2 R script. Heatmaps were generated using ggplot2 in R, with the transcriptional changes normalized using the som package.
Downloaded data87,88,89 were mapped, and TPM values were obtained in the same way.
The genome was divided into 200-bp windows for calculating the abundance of each variable. For ChIP-seq data, log2(IP/input) was calculated for each window using multiBigwigSummary in deeptools. For bisulfite-seq data, CG methylation was calculated using the number of sequenced Cs in the CG context within the window divided by the number of (C+T) in the CG context (windows without CG sites or aligned sequencing reads were removed). for RNA-seq data, log10(reads per kilobase of transcript per million mapped reads (RPKM)) was calculated for each window.
Multivariate linear regression models were generated in R using the lm function. For each variable, a linear model was fitted to predict H2B.8 enrichment and the adjusted R2 values are shown in Supplementary Table 2. Variables were gradually added to the model, and the predictive power of the adjusted model was examined by calculating adjusted R2 and Akaike information criterion scores in R (Extended Data Fig. 4f). A separate model was built using categorial variables of genomic regions to assess the association between H2B.8 and genomic features (adjusted R2 of the model is shown in Supplementary Table 2).
Two replicates of 10-day-old seedlings (1–3 g) were collected and fixed with 20 ml 2% formaldehyde solution for 15 min in vacuum conditions at room temperature and then quenched by adding 2.162 ml of 2.5 M glycine. Fixed seedling tissue was rinsed with water three times and dried with tissue paper.
The nuclei were released by grinding in liquid nitrogen and then resuspended with 25 ml of extraction buffer I (0.4 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 5 mM β-mercaptoethanol, 0.1 mM PMSF and 13 μl protease inhibitor). Nuclei were filtered through a miracloth (Calbiochem) and then centrifuged at 4,000 r.p.m. for 20 min at 4 °C. The supernatant was discarded and the pellet was resuspended with 1 ml of extraction buffer II (0.25 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 1% Triton X-100, 5 mM β-mercaptoethanol, 0.1 mM PMSF and 13 μl protease inhibitor). Then the mixture was centrifuged at 14,000 r.p.m. for 10 min at 4 °C and the pellet was resuspended with 300 μl of extraction buffer III (1.7 M sucrose, 10 mM Tris-HCl pH 8, 0.15% Triton X-100, 2 mM MgCl2, 5 mM β-mercaptoethanol, 0.1 mM PMSF and 1 μl protease inhibitor). The mixture was loaded onto an equal amount of clean extraction buffer III and centrifuged at 14,000 r.p.m. for 10 min. The pelleted nuclei were washed twice with 1× ice cold CutSmart buffer and finally resuspended in 0.5 ml volume. SDS was applied to permeabilize nuclei at 65 °C for 10 min, Triton X-100 was added to quench SDS. Thereafter, chromatin was digested with 400 units of MboI overnight at 37 °C with gentle rocking. MboI was then denatured to cease activity.
Digested chromatin underwent DNA end-repair with biotin-14-dCTP insertion followed by blunt-end ligation. After decrosslinking with proteinase K at 65 °C, DNA was purified using a phenol–chloroform extraction method. Biotin-14-dCTP was removed from non-ligated DNA fragment ends using T4 DNA polymerase. DNA was sheared to a range of 200–600 bp by sonication. Next, the fragments underwent end-repair and were pulled down by streptavidin C1 magnetic beads to enrich for fragments containing contact information. Fragment ends were then A-tailed, sequencing adapters were ligated and libraries were amplified by PCR for 12–14 cycles. Following purification, libraries were sequenced using an Illumina HiSeq X Ten platform with 2× 150 bp length reads. The Hi-C library construction and sequencing were conducted by Annoroad Gene Technology.
Sequencing reads were mapped to the TAIR10 reference genome using the HiC-Pro (v.2.11.1) pipeline90. The bam files (bwt2merged.bam) generated by HiC-Pro containing mapped reads were used as input files for FAN-C (v.0.9.8)91. The module ‘fanc auto’ was applied to generate 500, 100, 50, 10 and 1 kb contact matrices (hic files). The resultant hic files with 100-kb resolution were directed to the ‘fanc expected’ module to calculate the expected interaction probability against genomic distance for intrachromosomal interaction. For matrix and score comparisons, the default comparison method of fold-change was used with the ‘fanc compare’ command. The outputs (hic object) were transferred to text files by ‘fanc dump’ and were visualized as heatmaps in R using ggplot2. To explore whether higher contacts observed in p35S::H2B.8–eGFP depend on H2B.8 incorporation, the genome was binned into 1-kb windows. H2B.8 signals (log2(IP/input)) of each window were generated and sorted into 20 quantiles by strength. The interaction frequency differences (values generated by FAN-C at 1-kb resolution) of each quantile pair for either short-range interactions or interactions between pericentromeric regions and chromosome arms were averaged and plotted as heatmaps. The resolution of our Hi-C data was estimated as previously reported92. Our Hi-C data was deemed to achieve 1-kb resolution as 80% of genomic bins (1 kb) had >1,000个联系人。将我们的WT数据与已发布的联系矩阵36,37进行了比较。
两名不同的研究人员将杂合H2B.8-1突变体和WT植物交叉在两个单独的实验中。突变体与WT等位基因的遗传是通过DCAP基因分型确定的。在一个实验中,WT植物被用作雌性,并与杂合H2B.8-1突变植物交叉。共基因分型了743个F1后代,并在补充表3中列出了结果。在第二个实验中,进行了杂合H2B.8-1突变体与WT植物之间的相互交叉;基因分型总共574和575 F1后代(补充表3)。使用Fisher的精确测试在R中测试了统计显着性。
如先前所述,进行了WT和H2B.8的体外花粉发芽。
在图传说中注明了对实验数据和样本量进行的统计测试。所有数据点均来自生物学重复。盒子图显示中位数(厚黑色条)和第一个和第三四分位数,上下晶须分别延伸到第一个和第三四分位数的四分位数或最高和最低值的四分位数。在补充表7中列出了所有图中每个成对比较的精确P值。整个显微照片代表至少三个独立的实验。
有关研究设计的更多信息可在与本文有关的自然研究报告摘要中获得。
本文来自作者[yjmlxc]投稿,不代表颐居号立场,如若转载,请注明出处:https://yjmlxc.cn/life/202506-6391.html
评论列表(3条)
我是颐居号的签约作者“yjmlxc”
本文概览: 在这项研究中使用的A. thaliana植物(COL-0生态型)在22°C和70%的湿度下漫长的一天(16 h光,深色深色)条件下生长。在相同条件下没有葡萄糖的发芽培养基上...
文章不错《组蛋白H2B.8通过染色质相分离压实开花植物精子》内容很有帮助