FOXO1是汽车T单元中内存编程的主调节器

微信号:8149027
不接反杀,想去别人群里开挂,开不了不用加。
复制微信号
  对于在斯坦福大学完成的实验,根据大学机构审查委员会的豁免方案,从斯坦福大学血液中心获得了匿名捐助者的Buffy Coats,或者是从人类外围血液Leukopak(Stemcell Technologies)获得的。根据制造商的协议(Stemcell Technologies),使用Rosettesep人T细胞富集试剂盒,淋巴结密度梯度培养基和Sepmate-50管子分离CD3+细胞。对于在费城儿童医院完成的实验(CHOP),从宾夕法尼亚大学人类免疫学核心获得了纯化的CD3+健康供体T细胞。所有纯化的T细胞均在低温CS10培养基(Stemcell Technologies)中冷冻保存。   从ATCC获得细胞系,并稳定转导以表达标记,如下所示:143B骨肉瘤细胞表达GFP和带有CD19的萤火虫荧光素酶,有或没有CD19,NALM6 B-ALL细胞表达带有或不带GD2的firefly GFP和Firefly Luciferase。选择单细胞克隆以进行高抗原表达。在Dulbecco改良的Eagle培养基(DMEM)和RPMI 1640中培养了143b和NALM6细胞,并补充了10%胎牛血清(FBS),10 mM HEPES和1×青霉素 - 链霉素 - 链霉素 - 氯酸氨酸酯(Gibco)。NALM6和143B细胞系以及这些细胞系的工程版本先前是通过在本研究中使用之前通过STR指纹识别的。HEK293细胞最初是从国家癌症研究所获得的。经常使用Lonza mycoalert支原体检测试剂盒对细胞进行支原体测试。   这项研究中使用的汽车构建体包括CD19.28ζ,CD19.BBζ,抗GD2HA.28ζ和HER2.BBζ。密码子优化的TCF1,FOXO1或FOXO13A序列和P2A核糖体跳过序列是由IDT作为基因块生成的,并在MSGV逆转录病毒载体中构造。仅TNGFR构建体不包含P2A核糖体跳过序列。FOXO1DBD构建体是由两步诱变的雾化器Hifi DNA组件(新英格兰Biolabs)生成的。通过转化为恒星胜任的大肠杆菌(takara bio),将所有质粒放大,并通过测序验证序列(消除生物制药)。   为了产生逆转录病毒,将一千万个293GP细胞粘贴在15 cm的野生酯聚赖氨酸细胞培养板(康宁)上,并用20 ml的DMEM喂养,含有10%FBS,10 mM HEPES,10 mM HEPES和1×青霉素 - 链霉菌素 - 链霉菌素 - 谷氨酸氨酸氨基氨酸氨酸氨酸氨基氨酸氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨酸氨基氨基氨基氨酸氨基氨酸氨基氨基氨酸酯(GIBCO(GIBCO))。Transfection was performed by mixing a room-temperature solution of 3.4 ml Opti-MEM (Gibco) + 135 μl Lipofectamine 2000 (Invitrogen) (solution 1) with a second solution of 3.4 ml Opti-MEM + 11 μg RD114 packaging plasmid DNA + 22 μg MSGV retroviral plasmid of interest (solution 2) by slow dropwise addition of solution 2 to solution 1. The将组合溶液1​​和2混合物在室温下孵育30分钟,然后在293GP的细胞上替换培养基,并以缓慢的滴水方式将6.5 mL组合的溶液添加到板上。第二天,将培养基替换为293GP细胞。转染后48小时,从细胞中收集病毒上清液,并取代了培养基。72小时重复上清液。在每个步骤中,上清液都被旋转以去除细胞和碎屑,并在-80°C下冷冻以供将来使用。   从液氮中取出后,将T细胞在温水中融化,然后用T细胞培养基(AIM-V(Gibco)补充了5%FBS,10 mM HEPES,1次Penicillin-链霉素 - 谷氨酸 - 谷氨酸和100 U ML-1 U ML-1重组人IL-2(peprotech)或10%fibbs fibbs or rpmi(gibbs)或rpmi(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(gibbs)(g)1×青霉素 - 链霉素 - 谷氨酸和100 U ML-1重组人IL-2)。洗涤人类T型expandanαCD3/CD28 Dynabeads(Gibco),并以30μL重悬珠的体积添加到T细胞中,每百万T细胞。然后将T细胞和珠子重悬于T细胞培养基中的每毫升500,000 T细胞的浓度(所有测定第0天)。激活后48小时和72小时,T细胞被转导(请参阅“逆转录病毒转导”)。激活后96小时,使用Dynamag柱(Invitrogen)通过磁分离去除珠子。T细胞每48-72小时用新鲜的T细胞培养基喂食,并在喂养后保持每毫升0.5×106细胞的密度。对于FOXO1I实验,每2-3天从激活后的第4到15天,每2天到15天,每2-3天提供每2-3天的T细胞(Dimethyl硫氧化物; DMSO)或AS1842856(EMD Millipore)。   激活后第2天和第3天,用逆转录病毒转导T细胞。简而言之,在PBS中,分别用1 mL或500μL的1 mL或500μL涂有12或24孔的非组织培养板,并在4°C放置过夜。第二天,用PBS洗涤板,然后用2%牛血清白蛋白(BSA)+PBS封闭10分钟。添加逆转录病毒上清液,并在2500克以32°C离心2小时。随后将病毒上清液除去,并将T细胞添加到每个病毒涂层的孔中,以每孔的1×106 T细胞的密度为12孔板,对于24孔板,每孔的每孔和0.5×106 T细胞。   除非另有说明,否则使用Miltenyi Macs排序或Steamcell EasySep分类进行TNGFR隔离。对于Miltenyi Mac分类,将细胞重悬于FACS缓冲液中,并用生物素抗人CD271(TNGFR)抗体(Biolegend)染色。用PBS,0.5%BSA和2 mM EDTA(MACS缓冲液)洗涤细胞,重悬于MACS缓冲液中,并与链霉亲蛋白微粒(MILTENYI)混合,然后再次用MACS缓冲液洗涤并通过LS柱在Macs分离器(MILTENYI)中进行正面选择。对于Steamcell EasySep分类,使用制造商的协议分离出细胞的EasepSep人CD271阳性选择试剂盒II(Stemcell Technologies),并具有简单的Easepsep磁铁(Stemcell Technologies)。分离后,立即将细胞与温暖的完整T细胞培养基混合,计数并重悬于每毫升500,000。   对于FOXO1KO细胞上的RNA-seq实验,通过阴性选择来分离CD62LLO CAR+细胞,首先是通过用抗CD62L-PE染色细胞,然后按照制造商的指示(Steamcell Technologies)遵循EasySepe PE阳性选择KIT II方案。对于TNGFR,TCF1OE和FOXO1OE细胞的RNA-SEQ和ATAC-SEQ实验,在使用EasySep人类CD8+ T细胞分离试剂盒(Stemcell Technologies)进行测序之前,分离了CD8+ TNGFR+ CAR T细胞。为了对肿瘤浸润的汽车T细胞进行体内分析,根据制造商的说明,使用EasySep释放人CD45阳性选择试剂盒(Stemcell Technologies)从肿瘤中分离CD45+ T细胞。   为了询问内源性FOXO1在CAR T细胞功能中的作用,使用CRISPR – CAS9删除直接上游FOXO1 DNA结合域上游的序列。激活后的第4天,通过磁分离从激活珠中除去逆转录的CAR T细胞。通过使用P3主要细胞4D核对象试剂盒(LONZA)在电穿孔之前,将100万个CAR T细胞重悬在P3缓冲液中,制备了二十微粒反应。通过将0.15 ng的SGRNA靶向FOXO1或AAVS1(Synthego),以5 µg Alt-R S.P.络合核糖核蛋白。Cas9核酸酶(IDT,1081058)在将细胞悬浮液添加到每个反应之前。对于AAVS1编辑,使用了先前验证的SGRNA序列(5'-GGGGGGCCACUGGGACAGGAU-3')。对于FOXO1,串联使用了两个单独的SGRNA(5'-uugcgcggcggcugcccccgcgcgcgcgag-3'和5'-gagcuugcugcuggcugggagagagagagagcg-3')。对于TCF7基因编辑,我们使用了先前验证的SGRNA56(5'-ucaggggagaagaagccagag-3'),用于在CHOP上进行的大量RNA-SEQ实验。在斯坦福大学设计和验证了单独的SGRNA(5'-uuuccaggccugaaggccc-3'),并用于体内实验。在LONZA 4D核对象上使用EH115程序脉冲反应。将细胞立即在260 µL的温暖的AIM-V培养基中回收,并在圆底96孔板中补充了500 U ML-1 IL-2,并在24小时内膨胀成1 ml新鲜培养基。在井板中,将细胞保持在每毫升0.5×106细胞,至1.0×106个细胞,直到第14-16天,用于功能和表型表征。在第14-16天,通过细胞内转录因子染色(细胞信号,58223),然后进行流式细胞仪确定敲除效率。   将CAR T细胞在FACS缓冲液(PBS+2%FBS)中洗涤两次,并用荧光团偶联的表面抗体染色30分钟。分析之前,用FACS缓冲液洗涤细胞两次。用相同的初始表面染色进行细胞内染色,然后使用FOXP3转录因子染色缓冲液根据制造商的协议(EBIOSCIECE)固定,透化和染色。抗人FOXO1(克隆C29H4)和抗人TCF1(C36D9)抗体购自细胞信号传导。用于检测HA汽车的1A7抗14G2A白痴型抗体是从NCI获得的,并使用Dylight 650抗体标记套件(Thermo Fisher Scientific)进行了共轭。抗FMC63白痴型抗体是通过Genscript制造的,并使用Dylight 650抗体标记套件进行荧光共轭。除抗14G2A和抗FMC63外,在染色过程中以1:100稀释的稀释剂使用细胞表面抗体,这些抗体以1:1,000的稀释度使用。细胞内抗体在1:50稀释下使用,并以1:1,000稀释使用活/死染色。使用Spectroflo v.3.1.0使用BD Fortessa运行的FACS Diva软件或Cytek Aurora分析细胞。使用Cytek Spectroflo v.3.1.0和FlowJo V.10.8.1软件进行下游分析。所有试剂均在补充表2中列出。图1中显示了FOXO1KO和FOXO1OE实验的代表性门控策略。在我们为膜联蛋白V染色的实验中,在所有单曲上染色的实验中,在所有单曲上都门控,不包括碎屑,但不包括死亡或垂死的T细胞。对于MFI定量,使用未染色或FMO样品进行背景减法。扩展数据中的MFI定量图1E在某些对照样本中的MFI值负值,因此不是背景。   总共5×104个CAR T细胞与5×104个肿瘤细胞共培养在200μL的完整T细胞培养基(AIM-V或RPMI)中,在96孔板中,无IL-2一式三份。共培养后二十四小时,收集培养上清液,稀释20至100倍,并使用ELISA Max Max Kits(Biolegend)(Biolegend)和Nunc Maxisorp 96-Well Elisa Plates(Thermo Fisher Scientific)分析IL-2和IFNγ。在Tecan火花板读取器或Biotek Synergy H1运行Gen5 v.2.00.18上收集了吸光度读数。对于FOXO1I分析,共培养培养基包括在T细胞扩展过程中使用的AS1842856的浓度。   总共5×104 GFP+肿瘤细胞和T细胞对应于1:1、1:1:2、1:4、1:8和/或1:16效应子:目标比在300μL的T细胞培养基中共培养,而在96孔孔平底板中,IL-2没有IL-2。使用Incucyte Zoom S3 Live细胞分析系统(Essen Bioscience/Sartorius),每2-4 h每2-4小时以每2-4小时的孔每2-4 h的孔进行4–9张图像以4–9张图像成像。每孔或总GFP面积(每孔μm2)的总GFP强度分别分析NALM6或143B细胞的膨胀或收缩。将所有GFP强度和面积值归一化为第一个成像时间点(t = 0)。对于FOXO1I分析,共培养培养基包括在T细胞扩展过程中使用的AS1842856的浓度。   激活CAR T细胞并转导转导,并如上所述分离TNGFR+细胞。如上所述,将细胞在IL-2的AIM-V中培养,直到第14天“预启动”测定,包括流式细胞术,细胞因子分泌和incucyte。在第14天,建立了包括5×10 T细胞和2×106 NALM6肿瘤细胞的共培养,悬浮在没有IL-2的AIM-V中,最终浓度为5×105个总细胞,每毫升。在文化第3天,在没有IL-2的情况下,将共培养用5 mL的AIM-V喂食。在重复刺激共培养的第3天,如上所述,再次通过细胞因子分泌,杀死测定法和流式细胞仪测定了CAR T细胞。重复此过程,共计四个共培养物,以便在第14、17、20和23天对细胞因子和无孔测定进行了四个连续刺激,以分别通过实验结束的四个连续刺激,以分别用NALM6肿瘤零,一,两次和三次刺激。通过在共培养的第7天通过流式细胞仪分析细胞,以便在第14、17、20和23天将T细胞与肿瘤共培养,并分别在第21、24、27和30天分析。   使用海马生物科学分析仪XFE96进行代谢分析。简而言之,将0.2×106的细胞重悬于补充的细胞外通量测定培养基中,这些培养基补充了11 mM葡萄糖,2 mM谷氨酰胺和1 mM丙酮酸钠,并将其镀在细胞-TAK(康宁)涂层的微孔酸酯上,从而允许汽车T细胞粘附。Mitochondrial activity and glycolytic parameters were measured by the oxygen consumption rate (OCR) (pmol min−1) and extracellular acidification rate (ECAR) (mpH min−1), respectively, with the use of real-time injections of oligomycin (1.5 M), carbonyl cyanide ptrifluoromethoxyphenylhydrazone (FCCP; 0.5 M) and烤面酮和抗霉素(均为0.5 m)。根据制造商的说明(Seahorse Bioscience)计算呼吸参数。补充表2中列出了试剂源。   如前所述23,分离染色质和可溶性蛋白。简而言之,使用100 mM NaCl,300 mM蔗糖,3 mM MGCL2,10 mM管道(pH 6.8),0.1%igepal Ca-630,4 µg ml-1折断蛋白,10 µg mL-1 Leupeptin,4 µg ml-gmmsf和2 mls pms,制备了细胞骨架(CSK)缓冲液。用冰冷的PBS洗涤后,将细胞颗粒用CSK缓冲液裂解20分钟。将样品以1,500克离心5分钟,并通过以15,870克离心10分钟将可溶性部分离心并清除。可溶性部分的蛋白质浓度通过DC蛋白质测定法确定(Bio-Rad,5000116)。用CSK缓冲液洗涤含有染色质馏分的其余颗粒,以1,500克离心5分钟。将染色质结合的蛋白重悬于CSK缓冲液中,并减少1×Pierce样品缓冲液(Thermo Fisher Scientific,39000),并煮沸5分钟以进行溶解。补充可溶性馏分,用刺还原样品缓冲液以达到1倍并煮沸5分钟。对于免疫印迹,通过SDS-聚丙烯酰胺凝胶电泳分析每个样品的相等数量的可溶性和染色质分数,并转移到硝酸纤维素膜(Bio-Rad,1704158)。将膜在TBST中的5%牛奶中阻塞30分钟(1×Tris缓冲盐水,含有0.1%Tween-20)。用TBST洗涤后,将膜与抗Foxo1抗体(1:1,000;细胞信号传导,2880,Clone C29H4)在4°C下孵育。接下来,用TBST洗涤膜,并与抗小鼠(1:10,000,细胞信号,7074)或抗兔(1:10,000,细胞信号,7076)IgG一起孵育IgG,在室温下与辣根过氧化物酶结合1小时。使用Clarity Western ECL底物(Bio-Rad,1705060)和Chemidoc Imaging System和Image Lab Touch软件v.3.0(Bio-Rad)可视化膜。可视化后,使用温和的剥离缓冲液(1.5%甘氨酸,0.1%SD,1%Tween-20,pH 2.2)剥离膜。重复先前的步骤以检测可溶性(1:5,000 GAPDH;细胞信号传导,97166,克隆D4C6R)和染色质结合(1:1,000层粘连蛋白A;细胞信号传导,86846,克隆133A2)分数负载控制。使用Fiji V.2.14.0/1.5 f进行光密度分析。   在斯坦福大学APLAC或CHOP ACUP批准的方案下,NOD/SCID/IL2RG - / - (NSG)小鼠在斯坦福大学饲养,容纳和治疗。六到八周龄的小鼠是健康的,免疫功能低下的,药物和试验性的,并且在其他手术中未使用。小鼠在斯坦福兽医服务中心(VSC)或兽医服务部(DVR)的障碍设施中,其屏障设施为12小时的光周期周期,并将小鼠保持在20-23°C(CHOP)或20–26°C(Stanford)的温度下,湿度为30-70%。每个笼子里都有五只小鼠在充气的架子中,上用品,食物和水。对于生病的小鼠,固体饲料被切换到液体饲料以促进进食。在兽医的监督下,受过训练的VSC和DVR工作人员每天对小鼠进行监测,后者立即报告了过量的发病率和/或出于人道的原因。如果满足终点标准,则将小鼠安乐死,其中包括143B肿瘤大小超过1.2 cm或NALM6生物发光大于每秒5×1011光子,或者发生广泛疾病的证据(例如,无法缓冲,梳理,围绕,围裙或食用,过多的毛皮,Cachexia,过多的毛皮损失,毛皮,已融合了Posture或其他疾病,以哪个为准。选择肿瘤注射部位,以免干扰小鼠的正常身体功能,例如移动,饮食,饮用,排便和/或排尿。在含Nalm6的小鼠中,通过尾静脉注射(TVI)植入了100–200μL无菌PBS中的2×105至1×107细胞。在143B骨肉瘤模型中,通过肌内注射到侧面中,将1×106至3×106个细胞植入了100μl无菌PBS中。小鼠在输注CAR T细胞之前是随机分配的,以确保跨组相等的肿瘤负担。在主文本中注明的剂量和时间表将CAR T细胞通过TVI植入。NALM6植入, 通过腹膜内注射荧光素的注射和随后的成像通过IVIS IVIS生物发光成像仪来测量,并使用Living Image软件v.4.7.3(Perkin Elmer)进行量化,或通过Lago X Imager或使用AURA软件v.4.0.7(Spectruments Instruments Impecting Imageing Isofrane and Isofurane Anestess)进行了量化。通过卡尺测量值监测143B肿瘤的大小。肿瘤和T细胞注射是由对治疗和预期结果视而不见的技术人员进行的。   通过恢复的轨道血液收集,从现场,异氟烷 - 纳阿纳治疗的小鼠中取样外周血。使用FACS裂解溶液(BD)将五十微升的血液标记为表面抗体,并使用Countbright Bright Bosal Countute珠(Thermo Fisher Scientific)进行定量,然后在BD Fortessa细胞计算机上进行分析。为了对脾脏和肿瘤进行表型分析,将小鼠安乐死,并在PBS中机械解离并洗涤两次。将脾脏放在6厘米的培养皿中,并通过无菌70 µm细胞滤网过滤。肿瘤与HBSS中的胶原酶IV和DNase在机械上和化学分离,并在37°C下孵化30分钟。用PBS洗涤之前,将细胞通过无菌70 µm细胞滤网捣碎。来自脾和肿瘤的细胞在450g下在4°C下旋转5分钟,然后在冰上用ACK裂解缓冲液处理3分钟。用PBS洗涤两次细胞悬浮液,并使用EasySep释放人CD45阳性选择试剂盒通过阳性选择分离CAR T细胞。将细胞染色以进行感兴趣的标记,并使用Spectroflo软件3.1.0对Cytek Aurora进行分析。   总共通过离心和闪光液固定了总共0.5×106–1×106个T细胞。根据制造商的说明,使用RNeasy Plus Mini Kit或AllPrep DNA/RNA微型试剂盒(用于同时进行DNA和RNA分离)(QIAGEN)(QIAGEN)(QIAGEN)(QIAGEN)在冰上解冻,并根据制造商的说明进行处理。使用量子荧光计或Denovix DS-11 FX分光光度计/荧光计对总RNA进行定量,并使用150 bp配对的读取长度进行测序,每个样品(Novogene)约5000万读对。   我们使用NF核RNA-Seq管道(https://nf-co.re/rnaseq)处理了测序数据。简而言之,我们使用FASTQC对FASTQ文件进行了质量控制,并使用Trim Galore软件修剪了过滤后的读取。使用Star将实验引起的修剪的FASTQ文件对齐与HG38人基因组。然后,使用鲑鱼来生成逐样基因计数基质以进行下游分析。对使用方差稳定的转换处理的读数计数进行了PCA,并从样品中的前1,000个可变基因生成图。为了纠正捐赠者的批处理效果,使用了Limma软件包中的removeBatcheft函数。使用DESEQ2 V.3.16软件包进行了基因表达的差分分析,其绝对log2转换倍数变化≥0.5和错误的发现率(FDR)< 0.05. To create a heat map, differential genes were aggregated, and expressions were standardized with z-scores across samples. The k-means clustering algorithm with Pearson correlation as the distance metric was used to cluster the genes. Pathway analysis of the differential genes and grouped genes in the heat map was performed using QIAGEN Ingenuity Pathway Analysis 2022 Winter Release and clusterProfiler v.4.6.2. Cell-type enrichment was performed through the single-sample extension of gene set enrichment analysis (ssGSEA) in the GSVA v.1.46.0 R package using signature genes from previous studies8,55 using R v.4.1.0.   To generate single-cell RNA-seq libraries of tumour-infiltrating CAR T cells, Her2+ tumours were collected from five mice per condition, and human CD45+ cells were isolated by NGFR selection as described above (see ‘Cell selection’). Tumour-infiltrating CAR T cells were further purified by sorting human CD3+ TILs from each isolate using a Cytek Aurora Cell Sorter. A total of 20,000 CAR TILs were sorted from each tumour and pooled across five mice per group. Cells were barcoded and sequencing libraries were generated using the 10X Chromium Next GEM Single Cell 3’ v.3.1 kit (10X Genomics) according to the manufacturer’s instructions. Libraries were sequenced at the CHOP High Throughput Sequencing Core on an Illumina NovaSeq 6000 with an average read depth of 50,000 reads per cell.   FASTQ files were generated and aligned to the genome with Cell Ranger v.7.1.0, using a custom GRCh38 reference genome containing the Her2.BBζ CAR sequence. Low-quality cells with fewer than 300 or more than 7,500 genes or more than 10% mitochondrial reads were removed using Seurat v.4.3.0 (ref. 57) in R. Doublets were identified using DoubletFinder v.2.0.3 and removed. Filtered samples were normalized using SCTransform before integration. The integrated dataset was scaled, and UMAP dimensionality reduction was performed using the top 30 principal components. Unsupervised Louvain clustering was performed on a shared nearest neighbour graph at a final resolution of 0.6. FindAllMarkers (Seurat) was used to identify DEGs in each cluster, and GO analyses were performed for each cluster using ClusterProfiler v.4.6.2. DEGs and GO processes were used to manually annotate each cluster, and contaminating CD3− tumour cells were removed. Differential gene analyses between samples were performed using FindMarkers (Seurat) using the Wilcoxon rank-sum test with Bonferroni correction. Gene set scores for Teff, TRM and Treg cell subtypes were calculated with AddModuleScore (Seurat), using curated gene lists from a previous study58 (Extended Data Fig. 9g–i). AddModuleScore was also used to calculate a per-cell FOXO1 transcriptional activity score, using the top 100 upregulated genes in CD8+ HA.28ζ CAR T cells overexpressing FOXO1 versus tNGFR (Fig. 2). Gene set scores for Teff, TRM and FOXO1 signatures were generated for pan CD3+ T cells (Fig. 4i; individual genes are shown in Extended Data Fig. 9g–i). The Treg gene set score was computed for the CD4+ subset of cells expressing ≥1 CD4 mRNA counts and no detectable CD8A counts (Extended Data Fig. 9f).   CD8+tNGFR+ CAR T cells were isolated using the EasySep Human CD8+ T Cell Isolation Kit. A total of 150,000 CD8+ T cells were slow-frozen in BamBanker (Bulldog Bio) cell preservation medium. Approximately 100,000 CAR T cells were washed in ice-cold PBS and subjected to nuclei isolation using the following lysis buffer: 10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% NP40, 0.01% Digitonin and 1% BSA. After washing the cells, 50 μl lysis buffer was added to each sample and cells were resuspended by pipetting. Nuclear pellets were centrifuged and resuspended in the transposase reaction containing 10.5 μl H2O, 12.5 μl 2× TD buffer and 2 μl Tn5 transposase in a total of 25 μl. The reaction was incubated for 30 min at 37 °C. The reaction was stopped by the addition of 75 μl TE buffer and 500 μl PB buffer (QIAGEN), followed by column purification per the manufacturer’s recommendation (QIAGEN, Minelute Kit). DNA was eluted from the columns in 22 μl H2O. PCR reactions were set up as follows: 21 μl DNA, 25 μl Phusion master mix (NEB) and 2 μl of each barcoded PCR primer (ApexBio, K1058). Fifteen PCR cycles were run for each sample. Reactions were cleaned up with AMPure XP beads according to the recommendations of the manufacturer. Libraries were quantified with a Qubit fluorometer and fragment analysis was performed with Bioanalyzer. Libraries were sequenced on a NovaSeq 6000 sequencer.   ATAC-seq libraries were processed using the pepatac pipeline (http://pepatac.databio.org/) with default options. In brief, fastq files were trimmed to remove adapter sequences, and then pre-aligned to the mitochondrial genome to exclude mitochondrial reads. To ensure the accuracy of downstream analysis, multimapping reads aligning to repetitive regions of the genome were filtered from the dataset. Bowtie2 was then used to align the reads to the hg38 genome. SAMtools was used to identify uniquely aligned reads, and Picard was used to remove duplicate reads. The resulting deduplicated and aligned BAM file was used for downstream analysis. Peaks in individual samples were identified using MACS2 and compiled into a non-overlapping 500-bp consensus peak set. In brief, the peaks were resized to 500 bp width and ranked by significance. The peaks that overlapped with the same region were selected by ranks and the most significant peak was retained. The peak-sample count matrix was generated using ChrAccR with the default parameters of the run_atac function. Signal tracks for individual samples were generated within the pepatac pipeline. These tracks were then merged by group using WiggleTools to produce a comprehensive view of the data across all samples.   On the basis of our analysis of the peak-sample count matrix, the DESeq2 v.3.16 package was used to identify differential peaks across different conditions, with a threshold of an absolute log2-transformed fold change greater than 0.5 and P value less than 0.05. Adjusted P values were not used owing to donor variability. To generate PCA plots, we first extracted a variance-stabilized count matrix using the vst function in DESeq2. Next, we corrected for batch effects by donor using the removeBatchEffect function in the limma library. Finally, we generated PCA plots using the corrected matrix with the plotPCA function using the top 2,000 most variable peaks. We aggregated differential peaks across conditions, standardized the peak signals using z-scores across samples and performed k-means clustering to generate a chromatin accessibility heat map. Motif enrichments of differential peaks and grouped peaks were searched with HOMER and findMotifsGenome.pl with default parameters. The enrichment of cell-type-specific regulatory elements were performed with the gchromVAR package. In brief, this method weights chromatin features by log2-transformed fold changes of cell-type-specific regulatory elements from a previous report9 and computes the enrichment for each cell type versus an empirical background matched for GC content and feature intensity.   The FOXO1 regulon gene set was generated by intersecting downregulated differential genes (log2-transformed fold change < −0.25, FDR < 0.05) in FOXO1KO cells and upregulated differential genes (log2-transformed fold change >FOXO1OE细胞中的0.5,FDR <0.05)(补充表1)。使用SSGSEA在先前的RNA表达数据集中的GSVA R软件包中使用SSGSEA计算了调节元得分。   为了对单细胞ATAC-SEQ数据进行调节分析,从先前的研究中获得了由单细胞ATAC-SEQ介绍的CAR T产品的已处理的Signac数据对象。为了考虑样品对样本的变异性,将每个单元格的峰值平均碎片降采样,以使供体之间的一致性。此外,在检查质量控制统计数据后,包括低数据质量(包括每上文转录开始站点富集),将供体PT48和PT51排除在外。使用FOXO1和TCF1过表达的表观遗传学特征(图2),我们使用Chromvar工作流量计算了每个因子的人均表观遗传学特征,如前所述,如前所述,针对来自散装实验的相关T细胞签名。为了测试与此签名的响应者/非反应器关联的差异,我们在6个月时对供体的BCA状态进行了普通的最小二乘回归,并针对单个患者ID进行了调整。统计显着性是基于每个因素两个回归中响应者项的WALD测试统计量。   对于CLL CD19 CAR T细胞临床数据集的调节分析,从先前的Report2获得了来自CLL患者的激活CD19 CAR T细胞产物的基因表达数据表。如前所述,使用SSGSEA分析了FOXO1签名的富集,如先前所述并使用R软件包GSVA v.1.46.0进行的并进行了。为了比较响应者和非响应者之间的SSGSEA富集得分,进行了Mann-Whitney测试。为了在统计上确定生存分析的最佳分层点,我们根据先前所述的危险比和P值比较了候选分层点。使用GraphPad Prism v.9.5.0通过对数秩(Mantel-Cox)测试进行生存分析。   除非另有说明,否则使用Bonferroni,Tukey's或Dunnett的多重比较测试,或使用GraphPad Prism v.9.4.1的Tukey's或Dunnett的T-Test进行统计分析对组之间的显着差异。在在两个条件下比较了相同持续样品的实验中,我们进行了配对的学生的t检验。使用对数秩的架– cox检验比较生存曲线。统计方法不用于预先确定样本量。   有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。

本文来自作者[yjmlxc]投稿,不代表颐居号立场,如若转载,请注明出处:https://yjmlxc.cn/zlan/202506-8706.html

(11)
yjmlxc的头像yjmlxc签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • yjmlxc的头像
    yjmlxc 2025年06月21日

    我是颐居号的签约作者“yjmlxc”

  • yjmlxc
    yjmlxc 2025年06月21日

    本文概览:  对于在斯坦福大学完成的实验,根据大学机构审查委员会的豁免方案,从斯坦福大学血液中心获得了匿名捐助者的Buffy Coats,或者是从人类外围血液Leukopak(Stemc...

  • yjmlxc
    用户062106 2025年06月21日

    文章不错《FOXO1是汽车T单元中内存编程的主调节器》内容很有帮助